模式识别与人工智能
2025年4月6日 星期日   首 页     期刊简介     编委会     投稿指南     伦理声明     联系我们                                                                English
模式识别与人工智能  2017, Vol. 30 Issue (3): 260-268    DOI: 10.16451/j.cnki.issn1003-6059.201703008
研究与应用 最新目录| 下期目录| 过刊浏览| 高级检索 |
增强室内视觉里程计实用性的方法*
彭天博1,王恒升1,2,曾斌1
1.中南大学 机电工程学院 长沙 410083
2.中南大学 高性能复杂制造国家重点实验室 长沙 410083
Method of Improving Practicability of Indoor Visual Odometry
PENG Tianbo1, WANG Hengsheng1,2, ZENG Bin1
1.College of Mechanical and Electrical Engineering, Central South University, Changsha 410083
2.State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083

全文: PDF (996 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对现有视觉里程计在实时性、鲁棒性和准确性之间难以协调统一的问题,提出增强视觉里程计实用性的方法.分别运用基于图形处理器的定向加速分割测试特征和旋转感知的二进制鲁棒基元独立特征以及K最邻近加速提取、匹配图像的特征点.根据Kinect有效的深度量程剔除深度误差较大的特征点.求解相机帧间运动时,首先采用高效n点透视快速求解相机帧间运动参数的估计,然后将其作为Levenberg-Marquedt迭代法的初值,优化相机帧间运动参数.在运动参数解计算过程中,使用随机采样一致排除特征外点的干扰.实验表明,文中措施可以提高相机运动轨迹的解算速度,在室内环境下获得的相机运动轨迹更准确,鲁棒性更强,因此适用于室内机器人导航及定位.
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭天博
王恒升
曾斌
关键词 视觉里程计 高效n点透视(EPnP) Levenberg-Marquedt迭代 图形处理器(GPU)    
Abstract:Aiming at the controversy of the real-time performance, robustness and accuracy in visual odometry, method of improving practicability of indoor visual odometry is put forward to tackle the problem. The corner features of every image in the sequence are obtained using graphics processing unit based oriented FAST and rotated BRIE algorithm and matched using K Nearest neighbor algorithm to reduce the computation time. According to the measurement range of Kinect, points with high measurement error are rejected. To solve the movement of the camera between two frames, the estimation of movement parameters are firstly obtained with efficient perspective-n-point algorithm. Then, they are used as the initial value of Levenberg-Marquedt algorithm to refine the parameters. Random sample consensus is used to reject outliers during the computation of the camera movement. The experimental results show that the proposed method is effective for the accuracy improvement of the motion trajectory calculation.
Key wordsVisual Odometry    Efficient Perspective-N-Point(EPnP)    Levenberg-Marquedt Iteration    Graphics Processing Unit(GPU)   
收稿日期: 2016-11-01     
ZTFLH: TP 242.6  
基金资助:国家重点基础研究发展计划(973计划)(No.2013CB035504)、中南大学中央高校基本科研业务费专项资金(No.2016zzts313)资助
作者简介: 彭天博,男,1992年生,硕士研究生,主要研究方向为机器视觉、智能机器人.E-mail:simonptb@163.com.
王恒升(通讯作者),男,1963年生,博士,教授,主要研究方向为智能机器人.E-mail:whsheng@csu.edu.cn.
曾 斌,男,1993年生,硕士研究生,主要研究方向为机器视觉.E-mail:1137948305@qq.com.
引用本文:   
彭天博,王恒升,曾斌. 增强室内视觉里程计实用性的方法*[J]. 模式识别与人工智能, 2017, 30(3): 260-268. PENG Tianbo, WANG Hengsheng, ZENG Bin. Method of Improving Practicability of Indoor Visual Odometry. , 2017, 30(3): 260-268.
链接本文:  
http://manu46.magtech.com.cn/Jweb_prai/CN/10.16451/j.cnki.issn1003-6059.201703008      或     http://manu46.magtech.com.cn/Jweb_prai/CN/Y2017/V30/I3/260
版权所有 © 《模式识别与人工智能》编辑部
地址:安微省合肥市蜀山湖路350号 电话:0551-65591176 传真:0551-65591176 Email:bjb@iim.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn